z-logo
open-access-imgOpen Access
Bayesian space-frequency separation of wide-band sound sources by a hierarchical approach
Author(s) -
Erliang Zhang,
Jérôme Antoni,
Bin Dong,
Hichem Snoussi
Publication year - 2012
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.4754530
Subject(s) - separation (statistics) , basis (linear algebra) , source separation , bayesian probability , backpropagation , markov chain monte carlo , computer science , space (punctuation) , algorithm , mathematics , statistical physics , artificial neural network , artificial intelligence , physics , machine learning , geometry , operating system
This paper proposes an efficient solution to the separation of uncorrelated wide-band sound sources which overlap each other in both space and frequency domains. The space-frequency separation is solved in a hierarchical way by (1) expanding the sound sources onto a set of spatial basis functions whose coefficients become the unknowns of the problem (backpropagation step) and (2) blindly demixing the coefficients of the spatial basis into uncorrelated components relating to sources of distinct physical origins (separation step). The backpropagation and separation steps are both investigated from a Bayesian perspective. In particular, Markov Chain Monte Carlo sampling is advocated to obtain Bayesian estimates of the separated sources. Separation is guaranteed for sound sources having different power spectra and sufficiently smooth spatial modes with respect to frequency. The validity and efficiency of the proposed separation procedure are demonstrated on laboratory experiments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom