z-logo
open-access-imgOpen Access
From a profiled diffuser to an optimized absorber
Author(s) -
Tao Wu,
Trevor J. Cox,
Y. W. Lam
Publication year - 2000
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.429596
Subject(s) - diffuser (optics) , resistive touchscreen , quadratic equation , quadratic residue , absorption (acoustics) , scattering , materials science , acoustics , optics , mechanics , computer science , mathematics , physics , geometry , algorithm , light source , computer vision
The quadratic residue diffuser was originally designed for enhanced scattering. Subsequently, however, it has been found that these diffusers can also be designed to produce exceptional absorption. This paper looks into the absorption mechanism of the one-dimensional quadratic residue diffuser. A theory for enhanced absorption is presented. Corresponding experiments have also been done to verify the theory. The usefulness of a resistive layer at the well openings has been verified. A numerical optimization was performed to obtain a better depth sequence. The results clearly show that by arranging the depths of the wells properly in one period, the absorption is considerably better than that of a quadratic residue diffuser.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom