z-logo
open-access-imgOpen Access
Internal solitons in the ocean
Author(s) -
John R. Apel,
Lev A. Ostrovsky,
Yuri A. Stepanyants
Publication year - 1995
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.414338
Subject(s) - internal wave , geology , internal tide , nonlinear system , dispersion (optics) , geophysics , soliton , turbulence , waves and shallow water , continental shelf , radar , shear (geology) , turbulence modeling , oceanography , physics , mechanics , optics , computer science , petrology , telecommunications , quantum mechanics
Internal waves (IW) are among the important factors affecting sound propagation in the ocean. A special role may be played by solitary IWs because of their spatial localization and high magnitudes. Here, nonlinear IWs are discussed (a) from the standpoint of soliton theory and (b) from the viewpoint of experimental measurements. First, basic theoretical models for solitary IWs in the ocean are described, and various analytical solutions are treated, commencing with the well‐known Korteweg–de Vries equation and its important generalizations including effects of rotation, cylindrical divergence, eddy viscosity, shear flows and instabilities, and turbulence. Experimental evidence for the existence of solitons in the upper ocean is presented both for shallow and deep sea regions. The data include radar and optical images and in situ measurements of waveforms, propagation speeds, and dispersion characteristics. It is suggested that internal solitons in the ocean are ubiquitous and are generated primarily by ti...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom