A biophysical model of cochlear processing: Intensity dependence of pure tone responses
Author(s) -
Shihab Shamma,
Richard S. Chadwick,
W. John Wilbur,
Kathleen A. Morrish,
John Rinzel
Publication year - 1986
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.394173
Subject(s) - tonotopy , basilar membrane , cochlea , hair cell , physics , nonlinear system , acoustics , stimulus (psychology) , intensity (physics) , inner ear , transfer function , mechanics , biological system , optics , neuroscience , biology , psychology , electrical engineering , quantum mechanics , psychotherapist , engineering
A mathematical model of cochlear processing is developed to account for the nonlinear dependence of frequency selectivity on intensity in inner hair cell and auditory nerve fiber responses. The model describes the transformation from acoustic stimulus to intracellular hair cell potentials in the cochlea. It incorporates a linear formulation of basilar membrane mechanics and subtectorial fluid-cilia displacement coupling, and a simplified description of the inner hair cell nonlinear transduction process. The analysis at this stage is restricted to low-frequency single tones. The computed responses to single tone inputs exhibit the experimentally observed nonlinear effects of increasing intensity such as the increase in the bandwidth of frequency selectivity and the downward shift of the best frequency. In the model, the first effect is primarily due to the saturating effect of the hair cell nonlinearity. The second results from the combined effects of both the nonlinearity and of the inner hair cell low-pass transfer function. In contrast to these shifts along the frequency axis, the model does not exhibit intensity dependent shifts of the spatial location along the cochlea of the peak response for a given single tone. The observed shifts therefore do not contradict an intensity invariant tonotopic code.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom