Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz
Author(s) -
Kang Il Lee,
Min Joo Choi
Publication year - 2011
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.3671064
Subject(s) - attenuation , backscatter (email) , attenuation coefficient , exponent , materials science , power law , trabecular bone , optics , physics , mathematics , medicine , telecommunications , statistics , linguistics , philosophy , osteoporosis , computer science , wireless , endocrinology
The frequency-dependent attenuation and backscatter coefficients were measured in 25 bovine femoral trabecular bone samples from 0.2 to 1.2 MHz. When the average attenuation coefficient was fitted to a nonlinear power law α(f)=α(0)+α(1)f(n), the exponent n was found to be 1.65. In contrast, the average backscatter coefficient was fitted to a power law η(f)=η(1)f(n) and the exponent n was measured as 3.25. The apparent bone density was significantly correlated with the parameter α(1) (0.2-0.7 MHz: r = 0.852, 0.6-1.2 MHz: r = 0.832) as well as the backscatter coefficient (0.5 MHz: r = 0.751, 1.0 MHz: r = 0.808).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom