z-logo
open-access-imgOpen Access
A methodological and preliminary study on the acoustic effect of a trumpet player’s vocal tract
Author(s) -
Tokihiko Kaburagi,
Naoyuki Yamada,
Takashi Fukui,
Eriko Minamiya
Publication year - 2011
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.3596471
Subject(s) - vocal tract , acoustics , oscillation (cell signaling) , acoustic impedance , electrical impedance , phase (matter) , vocal folds , materials science , computer science , physics , larynx , anatomy , chemistry , medicine , biochemistry , quantum mechanics , ultrasonic sensor
A methodological study is presented to examine the acoustic role of the vocal tract in playing the trumpet. Preliminary results obtained for one professional player are also shown to demonstrate the effectiveness of the method. Images of the vocal tract with a resolution of 0.5 mm (2 mm in thickness) were recorded with magnetic resonance imaging to observe the tongue posture and estimate the vocal-tract area function during actual performance. The input impedance was then calculated for the player's air column including both the supra- and subglottal tracts using an acoustic tube model including the effect of wall losses. Finally, a time-domain blowing simulation by Adachi and Sato [J. Acoust. Soc. Am. 99, 1200-1209 (1996)] was performed with a model of the lips. In this simulation, the oscillating frequency of the lips was slightly affected by using different shapes of the vocal tract measured for the player. In particular, when the natural frequency of the lips was gradually increased, the transition to the higher mode occurred at different frequencies for different vocal-tract shapes. Furthermore, simulation results showed that the minimum blowing pressure required to attain the lip oscillation can be reduced by adjusting the vocal-tract shape properly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom