z-logo
open-access-imgOpen Access
Temporal and cross-range coherence of sound traveling through shallow-water nonlinear internal wave packets
Author(s) -
Timothy F. Duda
Publication year - 2006
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.2200699
Subject(s) - wave packet , coherence (philosophical gambling strategy) , acoustics , physics , coherence length , network packet , decorrelation , acoustic wave , nonlinear system , wave propagation , computer science , optics , computer network , superconductivity , algorithm , quantum mechanics
Expressions governing coherence scales of sound passing through a moving packet of nonlinear internal waves in a continental shelf environment are presented. The expressions describe the temporal coherence scale at a point, and the horizontal coherence scale in a plane transverse to the acoustic path, respectively. Factors in the expressions are the wave packet propagation speed, wave packet propagation direction, the fractional distance from the packet to the source, and the spatial scale S of packet displacement required to cause acoustic field decorrelation. The scale S is determined by the details of coupled mode propagation within the packet and the waveguide. Here, S is evaluated as a function of frequency for one environment, providing numerical values for the coherence scales of this environment. Coherence scales derived from numerical simulation of coupled mode acoustic propagation through moving wave packets substantiate the expressions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom