Measuring flow resistivity of porous materials at low frequencies range via acoustic transmitted waves
Author(s) -
Zine El Abiddine Fellah,
M. Fellah,
Naima Sebaa,
Walter Lauriks,
Claude Dépollier
Publication year - 2006
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.2179749
Subject(s) - rigid frame , materials science , porous medium , porosity , isotropy , electrical resistivity and conductivity , acoustics , scattering , flow (mathematics) , mechanics , optics , physics , composite material , frame (networking) , telecommunications , quantum mechanics , computer science
An acoustic transmissivity method is proposed for measuring flow resistivity of porous materials having rigid frame. Flow resistivity of porous material is defined as the ratio between the pressure difference across a sample and the velocity of flow of air through that sample per unit cube. The proposed method is based on a temporal model of the direct and inverse scattering problem for the diffusion of transient low-frequency waves in a homogeneous isotropic slab of porous material having a rigid frame. The transmission scattering operator for a slab of porous material is derived from the response of the medium to an incident acoustic pulse. The flow resistivity is determined from the solution of the inverse problem. The minimization between experiment and theory is made in the time domain. Tests are performed using industrial plastic foams. Experimental and numerical results, and prospects are discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom