z-logo
open-access-imgOpen Access
Image reconstruction from compressive samples via a max-product EM algorithm
Author(s) -
Zhao Song,
A. Dogandzic
Publication year - 2012
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.930862
Subject(s) - algorithm , underdetermined system , posterior probability , computer science , expectation–maximization algorithm , prior probability , gaussian noise , mathematics , compressed sensing , pattern recognition (psychology) , statistics , bayesian probability , artificial intelligence , maximum likelihood
We propose a Bayesian expectation-maximization (EM) algorithm for reconstructing structured approximately sparse signals via belief propagation. The measurements follow an underdetermined linear model where the regression-coefficient vector is the sum of an unknown approximately sparse signal and a zero-mean white Gaussian noise with an unknown variance. The signal is composed of large- and small-magnitude components identified by binary state variables whose probabilistic dependence structure is described by a hidden Markov tree (HMT). Gaussian priors are assigned to the signal coefficients given their state variables and the Jeffreys’ noninformative prior is assigned to the noise variance. Our signal reconstruction scheme is based on an EM iteration that aims at maximizing the posterior distribution of the signal and its state variables given the noise variance. We employ a max-product algorithm to implement the maximization (M) step of our EM iteration. The noise variance is a regularization parameter that controls signal sparsity. We select the noise variance so that the corresponding estimated signal and state variables (obtained upon convergence of the EM iteration) have the largest marginal posterior distribution. Our numerical examples show that the proposed algorithm achieves better reconstruction performance compared with the state-of-the-art methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom