z-logo
open-access-imgOpen Access
Mining spectral libraries to study sensors' discrimination ability
Author(s) -
Germain Forestier,
Jordi Inglada,
Cédric Wemmert,
Pierre Gançarski
Publication year - 2009
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.830392
Subject(s) - hyperspectral imaging , multispectral image , remote sensing , spectral resolution , spectral signature , spectral bands , computer science , resolution (logic) , land cover , spectral line , earth observation , image resolution , multispectral pattern recognition , full spectral imaging , artificial intelligence , satellite , geology , land use , physics , engineering , civil engineering , astronomy
In remote sensing data classification, the ability to discriminate different land cover or material types is directly linked with the spectral resolution and sampling provided by the optical sensor. Several previous studies showed that the spectral resolution is a critical issue, especially to discriminate different land covers in urban areas. In spite of the increasing avaibility of hyperspectral data, multispectral optical sensors on board of several satellites are still acquiring everyday a massive amount of data with a relatively poor spectral resolution (i.e. usually about 4 to 7 spectral bands). These remotely sensed data are intensively used for Earth observation regardless of their limited spectral resolution. In this paper, we propose to study the capacity of discrimination of several of these optical sensors : Pleiades, QuickBird, SPOT5, Ikonos, Landsat, etc. To achieve this goal, we used different spectral libraries which provide spectra of materials and land covers generally with a fine spectral resolution (from 350 to 2400nm with 10nm bandwidth). These spectra were extracted from these libraries and convolved with the Relative Spectral Responses (RSR) of each sensor to create spectra at the sensors' resolutions. Then, these reduced spectra were evaluated thanks to classical separability indices and machine learning tools. This study focuses on the capacity of each sensor to discriminate different materials according to its spectral resolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom