z-logo
open-access-imgOpen Access
Post-buckled precompressed (PBP) piezoelectric actuators for UAV flight control
Author(s) -
Roelof Vos,
Ron Barrett,
Lars Krakers,
Michel van Tooren
Publication year - 2006
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.658695
Subject(s) - actuator , piezoelectricity , aerospace engineering , acoustics , computer science , structural engineering , physics , engineering , artificial intelligence
This paper presents the use of a new class of flight control actuators employing Post-Buckled Precompressed (PBP) piezoelectric elements in morphing wing Uninhabited Aerial Vehicles (UAVs). The new actuator relies on axial compression to amplify deflections and control forces simultaneously. Two designs employing morphing wing panels based on PBP actuators were conceived. One design employed PBP actuators in a membrane wing panel over the aft 60% of the chord to impose roll control on a 720mm span subscale UAV. This design relied on a change in curvature of the actuators to control the camber of the airfoil. Axial compression of the actuators was ensured by means of rubber bands and increased end rotation levels with almost a factor of two up to ±13.6° peak-to-peak, with excellent correlation between theory and experiment. Wind tunnel tests quantitatively proved that wing morphing induced roll acceleration levels in excess of 1500 deg/s2. A second design employed PBP actuators in a wing panel with significant thickness, relying on a highly compliant Latex skin to allow for shape deformation and at the same time induce an axial force on the actuators. Bench tests showed that due to the axial compression provided by the skin end rotations were increased with more than a factor of two up to ±15.8° peak-to-peak up to a break frequency of 34Hz. Compared to conventional electromechanical servoactuaters, the PBP actuators showed a net reduction in flight control system weight, slop and power consumption for minimal part count. Both morphing wing concepts showed that PBP piezoelectric actuators have significant benefits over conventional actuators and can be successfully applied to induce aircraft control.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom