Ultrasonication of bismuth telluride nanocrystals fabricated by solvothermal method
Author(s) -
SangHyon Chu,
Sang H. Choi,
Jae Woo Kim,
Glen C. King,
James R. Elliott
Publication year - 2006
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.658071
Subject(s) - nanocrystal , materials science , sonication , bismuth telluride , tellurium , dispersity , chemical engineering , bismuth , solvothermal synthesis , nanotechnology , composite material , metallurgy , thermoelectric materials , polymer chemistry , thermal conductivity , engineering
The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180°C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom