z-logo
open-access-imgOpen Access
Terahertz spectroscopy of explosive materials
Author(s) -
Yaochun Shen,
Philip F. Taday,
Michael Kemp
Publication year - 2004
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.577188
Subject(s) - terahertz radiation , explosive material , materials science , terahertz spectroscopy and technology , spectroscopy , optics , explosive detection , reflection (computer programming) , optoelectronics , analytical chemistry (journal) , physics , chemistry , computer science , organic chemistry , chromatography , quantum mechanics , programming language
The terahertz spectrum of the explosive RDX has been measured using a conventional Fourier transform infrared spectroscopy and by terahertz pulse spectroscopy in transmission and reflection modes. Seven absorption features in the spectral range 5-120 cm-1 have been observed and identified as the fingerprints of RDX explosive. Furthermore, a sample consisting of RDX-based explosive, mounted side by side with lactose and sucrose pellets, has been imaged using a terahertz pulse imaging system. The recorded terahertz images and their spectral data have a spectral resolution of 1 cm-1 and cover a spectral range of 5-80 cm-1. This broad spectral coverage enables the spatial distribution of individual chemical substances of the sample to be mapped out. We also discuss the application of Principal Component Analysis and Component Spatial Pattern Analysis to the automatic identification of materials, such as explosives, from terahertz imaging.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom