z-logo
open-access-imgOpen Access
Using physical models to improve thermal IR detection of buried mines
Author(s) -
Dehui Chen,
Kürşat Şendur,
WenJiao Liao,
Brian A. Baertlein
Publication year - 2001
Publication title -
proceedings of spie, the international society for optical engineering/proceedings of spie
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.192
H-Index - 176
eISSN - 1996-756X
pISSN - 0277-786X
DOI - 10.1117/12.445472
Subject(s) - residual , computer science , bayesian probability , likelihood ratio test , pattern recognition (psychology) , data mining , artificial intelligence , algorithm , statistics , mathematics
Many aspects of a buried mine's thermal IR signature can be predicted through physical models, and insight provided by such models can lead to better detection. Several techniques for exploiting this information are described. The first approach involves ML estimation of model parameters and followed by classification of those parameters. We show that this approach is related to an approximate evaluation of an integral over the parameters that arises in a Bayesian formulation. This technique is compared with a generalized likelihood ratio test (GLRT) and with computationally efficient, model-free approaches, in which soil temperature data are classified directly. The benefit of using the temporal information is also investigated. Algorithm performance is illustrated using broadband IR imagery of buried mines acquired over a 24 hour period. It is found that the detection performance at a suitably selected time is comparable to the performance achieved by processing all times. The performance of the GLRT, for which detection is based only on the residual error, is inferior to a classifier using the parameters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom