z-logo
open-access-imgOpen Access
Black lipid membranes stabilized through substrate conjugation to a hydrogel
Author(s) -
TaeJoon Jeon,
Noah Malmstadt,
Jason L. Poulos,
Jacob J. Schmidt
Publication year - 2008
Publication title -
biointerphases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.633
H-Index - 45
eISSN - 1934-8630
pISSN - 1559-4106
DOI - 10.1116/1.2948314
Subject(s) - membrane , alamethicin , bilayer , lipid bilayer , model lipid bilayer , chemistry , lipid bilayer phase behavior , chemical engineering , substrate (aquarium) , polymer chemistry , materials science , biochemistry , oceanography , geology , engineering
Recent research in stabilizing lipid bilayer membranes has been directed toward tethering the membrane to a solid surface or contacting the membrane with a solid support such as a gel. It is also known that the solvent annulus plays an important role in lipid bilayer stability. In this work, the authors set out to stabilize the solvent annulus. Glass substrates with approximately 500 mum apertures were functionalized with 3-methacryloxypropyltrimethoxysilane to allow cross-linking with a surrounding polyethyleneglycol dimethacrylate hydrogel. The hydrogel makes a conformal mold around both the lipid bilayer and the solvent reservoir. Since the hydrogel is covalently conjugated with the glass substrate via vinyl groups, the solvent annulus is prevented from leaving the aperture boundary. Measurements of a membrane created with this approach showed that it remained a stable bilayer with a resistance greater than 1 GOmega for 12 days. Measurements of the ion channel gramicidin A, alpha-hemolysin, and alamethicin incorporated into these membranes showed the same conductance behavior as conventional membranes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom