z-logo
open-access-imgOpen Access
Validation of Numerical Models of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Against Full-Scale Measurements Within OC5 Phase III
Author(s) -
Wojciech Popko,
Amy Robertson,
Jason Jonkman,
Fabian Wendt,
Philipp Thomas,
Kolja Müller,
Matthias Kretschmer,
Torbjørn Ruud Hagen,
Christos Galinos,
Jean Baptiste Le Dreff,
Philippe Gilbert,
Bertrand Auriac,
Sho Oh,
Jacob Qvist,
Stian Høegh Sørum,
Loup Suja-Thauvin,
Hyunkyoung Shin,
Climent Molins,
Pau Trubat,
Paul Bonnet,
Roger Bergua,
Kai Wang,
Pengcheng Fu,
Jifeng Cai,
Zhisong Cai,
Armando Alexandre,
Robert Harries
Publication year - 2020
Language(s) - English
DOI - 10.1115/1.4047378
Subject(s) - offshore wind power , turbine , marine engineering , wind power , rotor (electric) , wind speed , environmental science , simulation , computer science , structural engineering , automotive engineering , engineering , physics , meteorology , aerospace engineering , mechanical engineering , electrical engineering
The main objective of the Offshore Code Comparison Collaboration Continuation, with Correlation (OC5) project is validation of aero-hydro-servo-elastic simulation tools for offshore wind turbines (OWTs) through comparison of simulated results to the response data of physical systems. Phase III of the OC5 project validates OWT models against the measurements recorded on a Senvion 5M wind turbine supported by the OWEC Quattropod from the alpha ventus offshore wind farm. The following operating conditions of the wind turbine were chosen for the validation: (1) idling below the cut-in wind speed, (2) rotor-nacelle assembly (RNA) rotation maneuver below the cut-in wind speed, (3) power production below and above the rated wind speed, and (4) shutdown. A number of validation load cases were defined based on these operating conditions. The following measurements were used for validation: (1) strains and accelerations recorded on the support structure and (2) pitch, yaw, and azimuth angles, generator speed, and electrical power recorded from the RNA. Strains were not directly available from the majority of the OWT simulation tools; therefore, strains were calculated based on out-of-plane bending moments, axial forces, and cross-sectional properties of the structural members. The simulation results and measurements were compared in terms of time series, discrete Fourier transforms, power spectral densities, and probability density functions of strains and accelerometers. A good match was achieved between the measurements and models setup by OC5 Phase III participants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here