Modeling Contacts and Hysteretic Behavior in Discrete Systems Via Variable-Order Fractional Operators
Author(s) -
Sansit Patnaik,
Fabio Semperlotti
Publication year - 2020
Publication title -
journal of computational and nonlinear dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 48
eISSN - 1555-1423
pISSN - 1555-1415
DOI - 10.1115/1.4046831
Subject(s) - nonlinear system , dynamical systems theory , state variable , context (archaeology) , mathematics , fractional calculus , variable (mathematics) , dynamical system (definition) , statistical physics , function (biology) , complex system , computer science , mathematical analysis , physics , paleontology , quantum mechanics , evolutionary biology , artificial intelligence , biology , thermodynamics
The modeling of nonlinear dynamical systems subject to strong and evolving nonsmooth nonlinearities is typically approached via integer-order differential equations. In this study, we present the possible application of variable-order (VO) fractional operators to a class of nonlinear lumped parameter models that have great practical relevance in mechanics and dynamics. Fractional operators are intrinsically multiscale operators that can act on both space- and time-dependent variables. Contrarily to their integer-order counterpart, fractional operators can have either fixed or VO. In the latter case, the order can be function of either independent or state variables. We show that when using VO equations to describe the response of dynamical systems, the order can evolve as a function of the response itself; therefore, allowing a natural and seamless transition between widely dissimilar dynamics. Such an intriguing characteristic allows defining governing equations for dynamical systems that are evolutionary in nature. Within this context, we present a physics-driven strategy to define VO operators capable of capturing complex and evolutionary phenomena. Specific examples include hysteresis in discrete oscillators and contact problems. Despite using simplified models to illustrate the applications of VO operators, we show numerical evidence of their unique modeling capabilities as well as their connection to more complex dynamical systems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom