z-logo
open-access-imgOpen Access
Evaluating Clustering Algorithms for Identifying Design Subproblems
Author(s) -
Jeffrey W. Herrmann,
Michael Morency,
Azrah Anparasan,
Erica Gralla
Publication year - 2018
Publication title -
journal of mechanical design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.911
H-Index - 120
eISSN - 1528-9001
pISSN - 1050-0472
DOI - 10.1115/1.4040176
Subject(s) - cluster analysis , computer science , data mining , range (aeronautics) , metric (unit) , hierarchical clustering , machine learning , algorithm , engineering , operations management , aerospace engineering
Understanding how humans decompose design problems will yield insights that can be applied to develop better support for human designers. However, there are few established methods for identifying the decompositions that human designers use. This paper discusses a method for identifying subproblems by analyzing when design variables were discussed concurrently by human designers. Four clustering techniques for grouping design variables were tested on a range of synthetic datasets designed to resemble data collected from design teams, and the accuracy of the clusters created by each algorithm was evaluated. A spectral clustering method was accurate for most problems and generally performed better than hierarchical (with Euclidean distance metric), Markov, or association rule clustering methods. The method's success should enable researchers to gain new insights into how human designers decompose complex design problems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom