z-logo
open-access-imgOpen Access
Extended High-Order Theory for Curved Sandwich Panels and Comparison With Elasticity
Author(s) -
Nunthadech Rodcheuy,
Y. Frostig,
G. A. Kardomateas
Publication year - 2017
Publication title -
journal of applied mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.69
H-Index - 97
eISSN - 1528-9036
pISSN - 0021-8936
DOI - 10.1115/1.4036612
Subject(s) - elasticity (physics) , logarithm , compressibility , sandwich panel , linear elasticity , mathematics , displacement field , mathematical analysis , rigidity (electromagnetism) , core (optical fiber) , bernoulli's principle , geometry , physics , mechanics , materials science , finite element method , composite material , optics , thermodynamics
A new one-dimensional high-order sandwich panel theory for curved panels is presented and compared with the theory of elasticity. The theory accounts for the sandwich core compressibility in the radial direction as well as the core circumferential rigidity. Two distinct core displacement fields are proposed and investigated. One is a logarithmic (it includes terms that are linear, inverse, and logarithmic functions of the radial coordinate). The other is a polynomial (it consists of second and third-order polynomials of the radial coordinate), and it is an extension of the corresponding field for the flat panel. In both formulations, the two thin curved face sheets are assumed to be perfectly bonded to the core and follow the classical Euler–Bernoulli beam assumptions. The relative merits of these two approaches are assessed by comparing the results to an elasticity solution. The case examined is a simply supported curved sandwich panel subjected to a distributed transverse load, for which a closed-form elasticity solution can be formulated. It is shown that the logarithmic formulation is more accurate than the polynomial especially for the stiffer cores and for curved panels of smaller radius.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom