z-logo
open-access-imgOpen Access
A Comparison of Methyl Decanoate and Tripropylene Glycol Monomethyl Ether for Soot-Free Combustion in an Optical Direct-Injection Diesel Engine
Author(s) -
Cosmin E. Dumitrescu,
A. S. Cheng,
Eric Kurtz,
Charles J. Mueller
Publication year - 2017
Publication title -
journal of energy resources technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.615
H-Index - 48
eISSN - 1528-8994
pISSN - 0195-0738
DOI - 10.1115/1.4036330
Subject(s) - soot , combustion , nox , diesel fuel , diesel engine , chemistry , ignition system , oxygenate , exhaust gas recirculation , materials science , organic chemistry , thermodynamics , physics , catalysis
Oxygenated fuels have beneficial effects for leaner lifted-flame combustion (LLFC), a nonsooting mode of mixing-controlled combustion associated with lift-off length equivalence ratios below approximately 2. A single-cylinder heavy-duty optical compression-ignition engine was used to compare neat methyl decanoate (MD) and T50, a 50/50 blend by volume of tripropylene glycol monomethyl ether (TPGME) and #2 ultralow sulfur emissions-certification diesel fuel (CF). High-speed, simultaneous imaging of natural luminosity (NL) and chemiluminescence (CL) were employed to investigate the ignition, combustion, and soot formation/oxidation processes at two injection pressures and three dilution levels. Additional Mie scattering measurements observed fuel-property effects on the liquid length of the injected spray. Results indicate that both MD and T50 effectively eliminated engine-out smoke emissions by decreasing soot formation and increasing soot oxidation during and after the end of fuel injection. MD further reduced soot emissions by 50–90% compared with T50, because TPGME could not completely compensate for the aromatics in the CF. Despite the low engine-out soot emissions, both fuels produced in-cylinder soot because the equivalence ratio at the lift-off length never reached the nonsooting limit. With respect to the other engine-out emissions, T50 had up to 16% higher nitrogen oxides (NOx) emissions compared with MD, but neither fuel showed the traditional soot-NOx trade-off associated with conventional mixing-controlled combustion. In addition, T50 had up to 15% and 26% lower unburned hydrocarbons (HC) and CO emissions, respectively, compared with MD.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom