z-logo
open-access-imgOpen Access
The Role of Simulation in the Design of a Semi-Enclosed Tubular Embolus Retrieval
Author(s) -
Xuelian Gu,
Yongxiang Qi,
Arthur G. Erdman,
Zhonghua Li
Publication year - 2017
Publication title -
journal of medical devices
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.242
H-Index - 29
eISSN - 1932-619X
pISSN - 1932-6181
DOI - 10.1115/1.4036286
Subject(s) - embolus , engineering drawing , computer science , mechanical engineering , engineering , medicine , surgery
A numerical analysis of a semi-enclosed tubular mechanical embolus retrieval device (MERD) for the treatment of acute ischemic stroke (AIS) is presented. In this research, the finite element analysis (FEA) methodology is used to evaluate mechanical performance and provide suggestions for optimizing the geometric design. A MERD fabricated from nickel–titanium alloy (Nitinol) tubing is simulated and analyzed under complex in vivo loading conditions involving shape-setting, crimping, deployment, and embolus retrieval. As a result, the peak strain of the shape-setting procedure is proved to be safe for the device pattern. However, the MERD shows poor mechanical behavior after crimping into a catheter, because the peak crimping strain obtains a value of 12.1%. The delivery and deployment step demonstrates that the artery wall has little risk of serious injuries or rupture. In addition, the process of simulation of embolus retrieval and device system migration inside the cerebral artery lumen provides useful information during the design process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom