z-logo
open-access-imgOpen Access
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
Author(s) -
George Kopasakis,
Joseph W. Connolly,
Daniel E. Paxson,
Peter Ma
Publication year - 2010
Publication title -
journal of turbomachinery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.972
H-Index - 112
eISSN - 1528-8900
pISSN - 0889-504X
DOI - 10.1115/1.3192148
Subject(s) - propulsion , airframe , turbojet , aerospace engineering , stall (fluid mechanics) , gas compressor , engineering , supersonic speed , jet engine , automotive engineering , vehicle dynamics , aeronautics
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom