z-logo
open-access-imgOpen Access
Incorporation Of Interference Fit And Cyclic Loading In Simulation Algorithm For Better Prediction Of Micromotion Of Femoral Stems
Author(s) -
Mohammed Rafiq Abdul Kadir,
Ulrich Hansen
Publication year - 2012
Publication title -
jurnal teknologi
Language(s) - English
Resource type - Journals
eISSN - 2180-3722
pISSN - 0127-9696
DOI - 10.11113/jt.v47.252
Subject(s) - physics , biomedical engineering , medicine
Aseptic loosening is one of the major causes for revision surgery in hip arthroplasty. This has been attributed to failure in achieving strong primary fixation. Interface micromotion beyond a certain threshold limit inhibits bone ingrowth and favours the formation of fibrous tissue. In this study, an algorithm was constructed to predict micromotion and therefore instability of femoral stems. Based on common physiological loading, micromotion is calculated throughout the bone-implant interface. Press fit stem insertion was modelled using interference fit and cyclic loading was used to better simulate actual loading configuration. An in-vitro micromotion experiment was carried out on four human cadaveric femurs to validate the micromotion algorithm. A good correlation was obtained between finite element predictions and the in-vitro micromotion experiment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom