An Active Learning Approach For Radial Basis Function Neural Networks
Author(s) -
Shahrum Shah Abdullah,
J.C. Allwright
Publication year - 2012
Publication title -
jurnal teknologi
Language(s) - English
Resource type - Journals
eISSN - 2180-3722
pISSN - 0127-9696
DOI - 10.11113/jt.v45.332
Subject(s) - humanities , physics , computer science , artificial intelligence , philosophy
This paper presents a new Active Learning algorithm to train Radial Basis Function (RBF) Artificial Neural Networks (ANN) for model reduction problems. The new approach is based on the assumption that the unobserved training data y at input x, lies within a set F x y f x y f x ( ) : ( ) ( ) = ! ! " # where F(x) is known from experience or past simulations. The new approach finds the location of the new sample such that the worst case error between the output of the resulting RBF ANN and the bounds of the unknown data as specified by F(x) is minimized. This paper illustrates the new approach for the case when x " R 1 . It was found that it is possible to find a good location for the new data sample by using the suggested approach in certain cases. A comparative study was also done indicating that the new experiment design approach is a good complement to the existing ones such as cross validation design and maximum minimum design. Abstrak. Kertas kerja ini membentangkan satu kaedah Pembelajaran Aktif yang baru untuk melatih Jaringan Saraf Buatan ( JSB) yang berasaskan Fungsi Asas Jejarian (FAJ) apabila JSB tersebut digunakan untuk menyelesaikan masalah Penurunan Model. Kaedah baru ini berasaskan andaian bahawa data yang diperlukan, y, pada input x, berada dalam sebuah set
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom