The evolution of thecideide microstructures and textures: traced from Triassic to Holocene
Author(s) -
Simonet Roda Maria,
Griesshaber Erika,
Angiolini Lucia,
Harper David A.T.,
Jansen Ulrich,
Bitner Maria Aleksandra,
Henkel Daniela,
Manzanero Eloy,
Müller Tamás,
Tomašových Adam,
Eisenhauer Anton,
Ziegler Andreas,
Schmahl Wolfgang W.
Publication year - 2021
Publication title -
lethaia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.926
H-Index - 57
eISSN - 1502-3931
pISSN - 0024-1164
DOI - 10.1111/let.12422
Subject(s) - geology , calcite , electron backscatter diffraction , paleontology , texture (cosmology) , mineral , shell (structure) , microstructure , mineralogy , materials science , composite material , image (mathematics) , artificial intelligence , computer science , metallurgy
Thecideide brachiopods are an anomalous group of invertebrates. In this study, we discuss the evolution of thecideide brachiopods from the Triassic to the Holocene and base our results and conclusions on microstructure and texture measurements gained from electron backscatter diffraction (EBSD). In fossil and Recent thecideide shells, we observe the following mineral units: (1) nanometric to small granules; (2) acicles; (3) fibres; (4) polygonal crystals; and (5) large roundish crystals. We trace for thecideide shells the change of mineral unit characteristics such as morphology, size, orientation, arrangement and distribution pattern. Triassic thecideide shells contain extensive sections formed of fibres interspersed with large, roundish crystals. Upper Cretaceous to Pleistocene thecideide hard tissues consist of a matrix of minute to small grains reinforced by acicles and small polygonal crystals. Recent thecideide species form their shell of mineral units that show a wide range of shapes, sizes and arrangements. We find from Late Triassic to Recent a gradual decrease in mineral unit size, regularity of mineral unit morphology and orientation and the degree of calcite co‐orientation. While crystallite co‐orientation is the highest for fibrous microstructures, it is strikingly low for taxa that form their shell out of nanogranular to acicular mineral units. Our results indicate that Upper Jurassic species represent transitional forms between ancient taxa with fibrous shells and Recent forms that construct their shells of acicles and granules. We attribute the observed changes in microstructure and texture to be an adaptation to a different habitat and lifestyle associated with cementation to hard substrates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom