Open Access
A phylogenetically informed search for an alternative Macrostomum model species, with notes on taxonomy, mating behavior, karyology, and genome size
Author(s) -
Schärer Lukas,
Brand Jeremias N.,
Singh Pragya,
Zadesenets Kira S.,
Stelzer ClausPeter,
Viktorin Gudrun
Publication year - 2020
Publication title -
journal of zoological systematics and evolutionary research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 50
eISSN - 1439-0469
pISSN - 0947-5745
DOI - 10.1111/jzs.12344
Subject(s) - biology , karyotype , ploidy , genome , evolutionary biology , zoology , genetics , chromosome , gene
Abstract The free‐living flatworm Macrostomum lignano is used as a model in a range of research fields—including aging, bioadhesion, stem cells, and sexual selection—culminating in the establishment of genome assemblies and transgenics. However, the Macrostomum community has run into a roadblock following the discovery of an unusual genome organization in M. lignano , which could now impair the development of additional resources and tools. Briefly, M. lignano has undergone a whole‐genome duplication, followed by rediploidization into a 2n = 8 karyotype (distinct from the canonical 2n = 6 karyotype in the genus). Although this karyotype appears visually diploid, it is in fact a hidden tetraploid (with rarer 2n = 9 and 2n = 10 individuals being pentaploid and hexaploid, respectively). Here, we report on a phylogenetically informed search for close relatives of M. lignano , aimed at uncovering alternative Macrostomum models with the canonical karyotype and a simple genome organization. We taxonomically describe three new species: the first, Macrostomum janicke i n. sp., is the closest known relative of M. lignano and shares its derived genome organization; the second, Macrostomum mirumnovem n. sp., has an even more unusual genome organization, with a highly variable karyotype based on a 2n = 9 base pattern; and the third, Macrostomum cliftonensis n. sp., does not only show the canonical 2n = 6 karyotype, but also performs well under standard laboratory culture conditions and fulfills many other requirements. M. cliftonensis is a viable candidate for replacing M. lignano as the primary Macrostomum model, being outcrossing and having an estimated haploid genome size of only 231 Mbp.