
Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny?
Author(s) -
TorresMachorro Ana Lilia,
Hernández Roberto,
Cevallos Ana María,
LópezVillaseñor Imelda
Publication year - 2010
Publication title -
fems microbiology reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.91
H-Index - 212
eISSN - 1574-6976
pISSN - 0168-6445
DOI - 10.1111/j.1574-6976.2009.00196.x
Subject(s) - biology , genetics , gene , ribosomal rna , intron , tandem repeat , genome , genomic organization , computational biology
The study of genomic organization and regulatory elements of rRNA genes in metazoan paradigmatic organisms has led to the most accepted model of rRNA gene organization in eukaryotes. Nevertheless, the rRNA genes of microbial eukaryotes have also been studied in considerable detail and their atypical structures have been considered as exceptions. However, it is likely that these organisms have preserved variations in the organization of a versatile gene that may be seen as living records of evolution. Here, we review the organization of the main rRNA transcription unit (rDNA) and the 5S rRNA genes (5S rDNA). These genes are reiterated in the genome of microbial eukaryotes and may be coded alone, in tandem repeats, linked to each other or linked to other genes. They may be found in the chromosome or extrachromosomally in linear or circular units. rDNA coding regions may contain introns, sequence insertions, protein‐coding genes or additional spacers. The 5S rDNA can be found in tandem repeats or genetically linked to genes transcribed by RNA polymerases I, II or III. Available information from about a hundred microbial eukaryotes was used to review the unexpected diversity in the genomic organization of rRNA genes.