z-logo
open-access-imgOpen Access
Glyceraldehyde‐3‐phosphate dehydrogenase from Thermotoga maritima : Strategies of protein stabilization
Author(s) -
Jaenicke Rainer
Publication year - 1996
Publication title -
fems microbiology reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.91
H-Index - 212
eISSN - 1574-6976
pISSN - 0168-6445
DOI - 10.1111/j.1574-6976.1996.tb00238.x
Subject(s) - thermotoga maritima , hyperthermophile , thermophile , biology , dehydrogenase , extremophile , biochemistry , enzyme , crystallography , archaea , chemistry , gene , escherichia coli
The molecular origin of protein stability has been the subject of active research for more than a generation (R. Jaenicke (1991) Eur. J. Biochem. 202, 715–728). Faced with the discovery of extremophiles, in recent years the problem has gained momentum, especially because of its biotechnological potential. In analyzing a number of enzymes from the hyperthermophilic bacterium Thermotoga maritima , it has become clear that the excess free energy of stabilization is equivalent to only a few weak bonds ( ΔΔG stab ≈ 50 kJ/mol). As taken from the comparison of homologous enzymes from mesophiles, thermophiles and hyperthermophiles, these accumulate from local interactions (especially ion pairs), enhanced secondary or supersecondary structure, and improved packing of domains and/or subunits, without significantly altering the overall topology. In this review, glyceraldehyde‐3‐phosphate dehydrogenase will be discussed as a representative example to illustrate possible adaptive strategies to the extreme thermal stress in hydrothermal vents.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here