
Cross‐kingdom interactions: Candida albicans and bacteria
Author(s) -
Shirtliff Mark E.,
Peters Brian M.,
JabraRizk Mary Ann
Publication year - 2009
Publication title -
fems microbiology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.899
H-Index - 151
eISSN - 1574-6968
pISSN - 0378-1097
DOI - 10.1111/j.1574-6968.2009.01668.x
Subject(s) - candida albicans , biofilm , microbiology and biotechnology , biology , context (archaeology) , corpus albicans , pseudomonas aeruginosa , colonization , bacteria , staphylococcus aureus , colonisation , genetics , paleontology
Bacteria and fungi are found together in a myriad of environments and particularly in a biofilm, where adherent species interact through diverse signaling mechanisms. Yet, despite billions of years of coexistence, the area of research exploring fungal–bacterial interactions, particularly within the context of polymicrobial infections, is still in its infancy. However, reports describing a multitude of wide‐ranging interactions between the fungal pathogen Candida albicans and various bacterial pathogens are on the rise. An example of a mutually beneficial interaction is coaggregation, a phenomenon that takes place in oral biofilms where the adhesion of C. albicans to oral bacteria is considered crucial for its colonization of the oral cavity. In contrast, the interaction between C. albicans and Pseudomonas aeruginosa is described as being competitive and antagonistic in nature. Another intriguing interaction is that occurring between Staphylococcus aureus and C. albicans , which although not yet fully characterized, appears to be initially synergistic. These complex interactions between such diverse and important pathogens would have significant clinical implications if they occurred in an immunocompromised host. Therefore, understanding the mechanisms of adhesion and signaling involved in fungal–bacterial interactions may lead to the development of novel therapeutic strategies for impeding microbial colonization and development of polymicrobial disease.