
Naturally occurring isolates of Neisseria gonorrhoea , which display anomalous serovar properties, express PIA/PIB hybrid porins, deletions in PIB or novel PIA molecules
Author(s) -
Cooke Susan J,
Jolley Keith,
Ison Catherine A,
Young Hugh,
Heckels John E
Publication year - 1998
Publication title -
fems microbiology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.899
H-Index - 151
eISSN - 1574-6968
pISSN - 0378-1097
DOI - 10.1111/j.1574-6968.1998.tb12981.x
Subject(s) - serotype , neisseria gonorrhoeae , microbiology and biotechnology , neisseria , biology , bacterial outer membrane , genetics , chemistry , bacteria , gene , escherichia coli
The por gene of Neisseria gonorrhoeae encodes the Protein I porin responsible for serovar specificity. In this study the por genes have been sequenced from clinical isolates which exhibited anomalous serovar reactivity. One group of ‘intermediate’ strains differed significantly from both Protein IA and IB strains, were more closely related to IA but appeared to represent a distinct class of Protein I. Another strain was closely related to Protein IB of serovar IB‐6 but contained a deletion of six amino acids in surface exposed loop 6 which removed epitopes recognised by IB specific monoclonal antibodies. The third group of strains, which reacted with both IA and IB specific monoclonal antibodies, expressed hybrid Protein I molecules containing both IA and IB epitopes. These strains appeared to originate from a double crossover between Proteins IA and IB with the amino and carboxy terminal residues homologous to IB while the surface exposed loop 6 demonstrated close homology to IA. This is the first demonstration of naturally occurring gonococci expressing a hybrid Protein IA/IB.