z-logo
open-access-imgOpen Access
Bradyrhizobium japonicum nodulation genetics
Author(s) -
Stacey Gary
Publication year - 1995
Publication title -
fems microbiology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.899
H-Index - 151
eISSN - 1574-6968
pISSN - 0378-1097
DOI - 10.1111/j.1574-6968.1995.tb07441.x
Subject(s) - bradyrhizobium japonicum , nod factor , nod , biology , rhizobia , gene , gene expression , microbiology and biotechnology , genetics , rhizobiaceae , biochemistry , symbiosis , bacteria
Studies of the genetics of nodulation by Bradyrhizobium japonicum have revealed many similar features with Rhizobium and Azorhizobium species, but also apparent differences. The regulation of nod gene expression in B. japonicum is complex, involving the interplay of the positive regulator, NodD 1 , as well as a repressor, No1A. A unique feature of B. japonicum is the involvement of a two‐component regulatory system, NodV and NodW, in the control of nod gene expression. It is not clear why B. japonicum requires this level of complexity to control nod gene transcription. The nod gene products encode the biosynthesis of substituted lipo‐chitin Nod signals that induce many of the early nodulation events. B. japonicum and B. elkanii produce a large variety of such Nod signals. The basic structure of the Nod signal, an acylated oligomer of N ‐acetylglucosamine, is synthesized through the action of NodA, NodB, and NodC. Various substitutions of this basic structure confer host specificity to the molecule. For example, in B. japonicum , the nodZ gene product is essential for fucosylation of the terminal, reducing N ‐acetylglucosamine residue. These observations argue for the interaction of a substituted Nod signal with a specific plant receptor molecule. However, structure/function studies using chemically synthesized Nod signal molecules suggest a more complex interaction between chain length and specific substitution. These findings leave open the possibility that a general chitin receptor may function in a unique way to elicit nodule formation. The novel features discovered through the study of B. japonicum contribute to our general understanding of nodulation and to the larger question of plant cell signal transduction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here