z-logo
open-access-imgOpen Access
Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world
Author(s) -
Faou A.,
Rajagopal B.S.,
Daniels L.,
Fauque G.
Publication year - 1990
Publication title -
fems microbiology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.899
H-Index - 151
eISSN - 1574-6968
pISSN - 0378-1097
DOI - 10.1111/j.1574-6968.1990.tb04107.x
Subject(s) - thiosulfate , sulfur , assimilation (phonology) , sulfur metabolism , chemistry , biochemistry , sulfur cycle , tetrathionate , microbial metabolism , bacteria , biology , organic chemistry , philosophy , linguistics , genetics
Among sulfur compounds, thiosulfate and polythionates are present at least transiently in many environments. These compounds have a similar chemical structure and their metabolism appears closely related. They are commonly used as energy sources for photoautotrophic or chemolithotrophic microorganisms, but their assimilation has been seldom studied and their importance in bacterial physiology is not well understood. Almost all bacterial strains are able to cleave these compounds since they possess thiosulfate sulfur transferase, thiosulfate reductace or S ‐sulfocysteine synthase activities. However, the role of these enzymes in the assimilation of thiosulfate or polythionates has not always been clearly established. Elemental sulfur is, on the contrary, very common in the environmental. It is an energy source for sulfur‐reducing eubacteria and archaebacteria and many sulfur‐oxidizing archaebacteria. A phenomenon still not well understood is the ‘excessive assimilatory sulfur metabolism’ as observed in methanogens which perform a sulfur reduction which exceeds their anabolic needs without any apparent benefit. In heterotrophs, assimilation of elemental sulfur is seldom described and it is uncertain whether this process actually has a physiological significance. Thus, reduction of thiosulfate and elemental sulfur is a common by incompletely understood feature among bacteria. These activities could give bacteria a selective advantage, but futher investigations are needed to clarify this possibility. Presence of thiosulfate, polythionates and sulfur reductase activities does not imply obligatorily that these activities play a role in thiosulfate, polythionates or sulfur assimilation as these compounds could be merely intermediates in bacterial metabolism. The possibility also exists that the assimilation of these sulfur compounds is just a side effect of an enzymatic activity with a completely different function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here