
Pathogen and autoantigen homologous regions within the cystic fibrosis transmembrane conductance regulator (CFTR) protein suggest an autoimmune treatable component of cystic fibrosis
Author(s) -
Carter Chris J.
Publication year - 2011
Publication title -
fems immunology & medical microbiology
Language(s) - English
Resource type - Journals
eISSN - 1574-695X
pISSN - 0928-8244
DOI - 10.1111/j.1574-695x.2011.00803.x
Subject(s) - cystic fibrosis transmembrane conductance regulator , biology , cystic fibrosis , pathogen , microbiology and biotechnology , immunology , autoantibody , antibody , genetics
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel provides the glutathione and hypochlorous acid necessary for bactericidal/viricidal actions. CFTR mutations block these effects, diminishing pathogen defence and allowing extracellular pathogen accumulation, where antibody encounter is likely. KEGG pathway analysis of the CFTR interactome shows that CFTR is involved in pathogen entry pathways and immune defence as well as in pathways relevant to comorbid conditions (diabetes, cardiomyopathies and sexual organ development). Pseudomonas aeruginosa and Staphylococcus aureus infections decrease the lifespan of cystic fibrosis patients and Stenotrophomonas maltophilia colonization is increased. Autoantibodies, targeting myeloperoxidase, the bactericidal/permeability‐increasing protein and calgranulin may further compromise pathogen defence. Short consensus sequences, within immunogenic extracellular regions of the CFTR protein, are homologous to proteins expressed by P. aeruginosa, S. aureus and S. maltophilia , and to several autoantigens, with a universal overlap between autoantigen/pathogen/CFTR consensi. Antibodies to pathogens are thus likely responsible for the creation of these autoantibodies, which, with pathogen antibodies, may target the CFTR protein acting as antagonists, further compromising its function. This creates a feedforward cycle, diminishing the function of the CFTR protein and increasing the probability of pathogen accumulation and antibody production at every turn. Interruption of this cycle by antibody adsorption or immunosuppressant therapy may be beneficial in cystic fibrosis.