z-logo
open-access-imgOpen Access
Feedback effects of host‐derived adenosine on enteropathogenic Escherichia coli
Author(s) -
Crane John K.,
Shulgina Irina
Publication year - 2009
Publication title -
fems immunology & medical microbiology
Language(s) - English
Resource type - Journals
eISSN - 1574-695X
pISSN - 0928-8244
DOI - 10.1111/j.1574-695x.2009.00598.x
Subject(s) - enteropathogenic escherichia coli , adenosine , biology , microbiology and biotechnology , secretion , virulence , extracellular , pilus , biochemistry , gene
Enteropathogenic E. coli (EPEC) is a common cause of diarrhea in children in developing countries. After adhering to intestinal cells, EPEC secretes effector proteins into host cells, causing cell damage and eventually death. We previously showed that EPEC infection triggers the release of ATP from host cells and that ATP is broken down to ADP, AMP, and adenosine. Adenosine produced from the breakdown of extracellular ATP triggers fluid secretion in intestinal monolayers and may be an important mediator of EPEC‐induced diarrhea. Here we examined whether adenosine has any effects on EPEC bacteria. Adenosine stimulated EPEC growth in several types of media in vitro . Adenosine also altered the pattern of EPEC adherence to cultured cells from a localized adherence pattern to a more diffuse pattern. Adenosine changed the expression of virulence factors in EPEC, inhibiting the expression of the bundle‐forming pilus (BFP) and enhancing expression of the EPEC secreted proteins (Esps). In vivo , experimental manipulations of adenosine levels had strong effects on the outcome of EPEC infection in rabbit intestinal loops. In addition to its previously reported effects on host tissues, adenosine has strong effects on EPEC bacteria, stimulating EPEC growth, altering its adherence pattern, and changing the expression of several important virulence genes. Adenosine, like noradrenaline, is a small, host‐derived molecule that is utilized as a signal by EPEC.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here