
Kupffer cells play important roles in the metabolic degradation of a soluble anti‐tumor (1 → 3)‐β‐ d ‐glucan, SSG, in mice
Author(s) -
Suda Masahiro,
Ohno Naohito,
Hashimoto Tomoe,
Koizumi Kinuyo,
Adachi Yoshiyuki,
Yadomae Toshiro
Publication year - 1996
Publication title -
fems immunology & medical microbiology
Language(s) - English
Resource type - Journals
eISSN - 1574-695X
pISSN - 0928-8244
DOI - 10.1111/j.1574-695x.1996.tb00058.x
Subject(s) - kupffer cell , spleen , biology , macrophage , glucan , biochemistry , endocrinology , medicine , immunology , in vitro
Metabolic degradation of a soluble highly branched (1 → 3)‐β‐ d ‐glucan, SSG, was examined in mice using a macrophage blocker, gadolinium chloride (GdCl 3 ). Intraperitoneally administered SSG distributed in the liver was slowly degraded, and after 5 weeks about 30% of the SSG became anionic. In addition, it is suggested that the metabolites would contain fewer branching points as assessed by the reactivity to limulus factor G. On the other hand, in the spleen, the molecular weight and the degree of branching of SSG were not changed for at least 5 weeks. Blockade of Kupffer cells by GdCl 3 did not significantly change the distribution ratio of SSG in the liver. However, the treatment significantly delayed the degradation of SSG. These results suggested that Kupffer cells play important roles, not in the distribution, but in the oxidative degradation of SSG in the liver. In addition, splenic macrophages did not significantly contribute to the metabolic degradation of SSG.