z-logo
open-access-imgOpen Access
Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high‐strength organic wastewater
Author(s) -
Lee Changsoo,
Kim Jaai,
Shin Seung Gu,
Hwang Seokhwan
Publication year - 2008
Publication title -
fems microbiology ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.377
H-Index - 155
eISSN - 1574-6941
pISSN - 0168-6496
DOI - 10.1111/j.1574-6941.2008.00530.x
Subject(s) - temperature gradient gel electrophoresis , biology , fermentation , microbial population biology , propionate , food science , mesophile , clostridium , wastewater , anaerobic digestion , microbiology and biotechnology , bacteria , clostridia , clostridiaceae , anaerobic exercise , 16s ribosomal rna , biochemistry , methane , ecology , waste management , physiology , genetics , engineering , toxin
Shifts in bacterial and archaeal communities, associated with changes in chemical profiles, were investigated in an anaerobic batch reactor treating dairy‐processing wastewater prepared with whey permeate powder. The dynamics of bacterial and archaeal populations were monitored by quantitative real‐time PCR and showed good agreement with the process data. A rapid increase in bacterial populations and a high rate of substrate fermentation were observed during the initial period. Growth and regrowth of archaeal populations occurred with biphasic production of methane, corresponding to the diauxic consumption of acetate and propionate. Bacterial community structure was examined by denaturing gel gradient electrophoresis (DGGE) targeting 16S rRNA genes. An Aeromonas ‐like organism was suggested to be mainly responsible for the rapid fermentation of carbohydrate during the initial period. Several band sequences closely related to the Clostridium species, capable of carbohydrate fermentation, lactate or ethanol fermentation, and/or homoacetogenesis, were also detected. Statistical analyses of the DGGE profiles showed that the bacterial community structure, as well as the process performance, varied with the incubation time. Our results demonstrated that the bacterial community shifted, reflecting the performance changes and, particularly, that a significant community shift corresponded to a considerable process event. This suggested that the diagnosis of an anaerobic digestion process could be possible by monitoring bacterial community shifts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here