
Degradation of anthracene by selected white rot fungi
Author(s) -
Vyas B.R.M.,
Bakowski S.,
Šašek V.,
Matucha M.
Publication year - 1994
Publication title -
fems microbiology ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.377
H-Index - 155
eISSN - 1574-6941
pISSN - 0168-6496
DOI - 10.1111/j.1574-6941.1994.tb00091.x
Subject(s) - phanerochaete , chrysosporium , trametes versicolor , pleurotus ostreatus , lignin peroxidase , biology , white rot , anthracene , anthraquinone , laccase , lignin , oxidizing agent , microbiology and biotechnology , biodegradation , food science , botany , biochemistry , enzyme , organic chemistry , chemistry , mushroom , ecology
Approximately 60% of the originally supplied anthracene (AC) was degraded in ligninolytic stationary cultures of selected white rot fungi within 21 days. All the white rot fungi tested oxidized AC to anthraquinone (AQ). Unlike Phanerochaete chrysosporium and strain Px, with Pleurotus ostreatus, Coriolopsis polyzona and Trametes versicolor , AQ did not accumulate in the cultures, indicating that AQ was degraded further and its degradation did not appear to be a rate‐limiting step. However, P. ostreatus and C. polyzona failed to degrade AQ in the absence of AC. P. ostreatus, T. versicolor and strain Px did not produce lignin peroxidase (ligninase) (LIP) under the test conditions but oxidized AC to AQ suggesting that white rot fungi produce enzyme(s) other than LIP capable of oxidizing compounds with high ionization potential like AC. Moreover, in the case of Ph. chrysosporium and C. polyzona , AC degradation started earlier than the production of LIP. Veratryl alcohol (VA) seemed to be playing a role in AC oxidation catalyzed by LIP in Ph. chrysosporium .