z-logo
open-access-imgOpen Access
Turbidostat culture of S accharomyces cerevisiae W 303‐1 A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1
Author(s) -
AvrahamiMoyal Liat,
Engelberg David,
Wenger Jared. W.,
Sherlock Gavin,
Braun Sergei
Publication year - 2012
Publication title -
fems yeast research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.991
H-Index - 92
eISSN - 1567-1364
pISSN - 1567-1356
DOI - 10.1111/j.1567-1364.2012.00803.x
Subject(s) - biology , ethanol , saccharomyces cerevisiae , clone (java method) , yeast , mutation , genetics , mutant , population , strain (injury) , stop codon , microbiology and biotechnology , biochemistry , amino acid , gene , anatomy , demography , sociology
We investigated the genetic causes of ethanol tolerance by characterizing mutations selected in S accharomyces cerevisiae W 303‐1 A under the selective pressure of ethanol. W 303‐1 A was subjected to three rounds of turbidostat, in a medium supplemented with increasing amounts of ethanol. By the end of selection, the growth rate of the culture has increased from 0.029 to 0.32 h −1 . Unlike the progenitor strain, all yeast cells isolated from this population were able to form colonies on medium supplemented with 7% ethanol within 6 days, our definition of ethanol tolerance. Several clones selected from all three stages of selection were able to form dense colonies within 2 days on solid medium supplemented with 9% ethanol. We sequenced the whole genomes of six clones and identified mutations responsible for ethanol tolerance. Thirteen additional clones were tested for the presence of similar mutations. In 15 of 19 tolerant clones, the stop codon in ssd1‐d was replaced with an amino acid‐encoding codon. Three other clones contained one of two mutations in UTH1 , and one clone did not contain mutations in either SSD1 or UTH1 . We showed that the mutations in SSD1 and UTH1 increased tolerance of the cell wall to zymolyase and conclude that stability of the cell wall is a major factor in increased tolerance to ethanol.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here