
Transcriptional regulation of nonfermentable carbon utilization in budding yeast
Author(s) -
Turcotte Bernard,
Liang Xiao Bei,
Robert François,
Soontorngun Nitnipa
Publication year - 2010
Publication title -
fems yeast research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.991
H-Index - 92
eISSN - 1567-1364
pISSN - 1567-1356
DOI - 10.1111/j.1567-1364.2009.00555.x
Subject(s) - biology , glyoxylate cycle , gluconeogenesis , regulation of gene expression , transcriptional regulation , derepression , biochemistry , citric acid cycle , gene expression , microbiology and biotechnology , gene , metabolism , psychological repression
Saccharomyces cerevisiae preferentially uses glucose as a carbon source, but following its depletion, it can utilize a wide variety of other carbons including nonfermentable compounds such as ethanol. A shift to a nonfermentable carbon source results in massive reprogramming of gene expression including genes involved in gluconeogenesis, the glyoxylate cycle, and the tricarboxylic acid cycle. This review is aimed at describing the recent progress made toward understanding the mechanism of transcriptional regulation of genes responsible for utilization of nonfermentable carbon sources. A central player for the use of nonfermentable carbons is the Snf1 kinase, which becomes activated under low glucose levels. Snf1 phosphorylates various targets including the transcriptional repressor Mig1, resulting in its inactivation allowing derepression of gene expression. For example, the expression of CAT8 , encoding a member of the zinc cluster family of transcriptional regulators, is then no longer repressed by Mig1. Cat8 becomes activated through phosphorylation by Snf1, allowing upregulation of the zinc cluster gene SIP4 . These regulators control the expression of various genes including those involved in gluconeogenesis. Recent data show that another zinc cluster protein, Rds2, plays a key role in regulating genes involved in gluconeogenesis and the glyoxylate pathway. Finally, the role of additional regulators such as Adr1, Ert1, Oaf1, and Pip2 is also discussed.