z-logo
open-access-imgOpen Access
Inactivation of the Hansenula polymorpha PMR1 gene affects cell viability and functioning of the secretory pathway
Author(s) -
Agaphonov M.O.,
Plotnikova T.A.,
Fokina A.V.,
Romanova N.V.,
Packeiser A.N.,
Kang H.A.,
TerAvanesyan M.D.
Publication year - 2007
Publication title -
fems yeast research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.991
H-Index - 92
eISSN - 1567-1364
pISSN - 1567-1356
DOI - 10.1111/j.1567-1364.2007.00247.x
Subject(s) - golgi apparatus , endoplasmic reticulum , biology , unfolded protein response , vacuolar protein sorting , secretory pathway , saccharomyces cerevisiae , mutant , microbiology and biotechnology , secretion , yeast , secretory protein , mutation , biochemistry , gene
In yeast, functions of the endoplasmic reticulum (ER) depend on the Golgi apparatus Ca 2+ pool, which is replenished by the medial‐Golgi ion pump Pmr1p. Here, to dissect the role of the Golgi Ca 2+ pool in protein folding and elimination of unfolded proteins in the ER, the manifestations of the pmr1 mutation in yeast Hansenula polymorpha were studied. The PMR1 gene was disrupted in a H. polymorpha diploid strain. Haploid segregants of this diploid bearing the disruption allele were viable, though they showed a severe growth defect on synthetic medium and rapidly died during storage at low temperature. Disruption of H. polymorpha PMR1 led to defects of the Golgi‐hosted protein glycosylation and vacuolar protein sorting. This mutation increased the survival rate of H. polymorpha cells upon treatment with the proapoptotic drug amiodarone. Unlike Saccharomyces cerevisiae , the H. polymorpha pmr1 mutant was not hypersensitive to chemicals that induce the accumulation of unfolded proteins in the ER, indicating that the elimination of unfolded proteins from the ER was not essentially affected. At the same time, the pmr1 mutation improved the secretion of human urokinase and decreased its intracellular aggregation, indicating an influence of the mutation on the protein folding in the ER.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here