
The baryon fraction of ΛCDM haloes
Author(s) -
Crain Robert A.,
Eke Vincent R.,
Frenk Carlos S.,
Jenkins Adrian,
McCarthy Ian G.,
Navarro Julio F.,
Pearce Frazer R.
Publication year - 2007
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1111/j.1365-2966.2007.11598.x
Subject(s) - physics , baryon , fraction (chemistry) , astrophysics , astronomy , organic chemistry , chemistry
We investigate the baryon fraction in dark matter haloes formed in non‐radiative gas‐dynamical simulations of the Λ cold dark matter (CDM) cosmogony. By combining a realization of the Millennium Simulation with a simulation of a smaller volume focusing on dwarf haloes, our study spans five decades in halo mass, from 10 10 to 10 15 h −1 M ⊙ . We find that the baryon fraction within the halo virial radius is typically 90 per cent of the cosmic mean, with a rms scatter of 6 per cent, independently of redshift and of halo mass down to the smallest resolved haloes. Our results show that, contrary to the proposal of Mo et al., pre‐virialization gravitational heating is unable to prevent the collapse of gas within galactic and protogalactic haloes, and confirm the need for non‐gravitational feedback in order to reduce the efficiency of gas cooling and star formation in dwarf galaxy haloes. Simulations including a simple photoheating model (where a gas temperature floor of T floor = 2 × 10 4 K is imposed from z = 11) confirm earlier suggestions that photoheating can only prevent the collapse of baryons in systems with virial temperatures T 200 ≲ 2.2 T floor ≈ 4.4 × 10 4 K (corresponding to a virial mass of M 200 ∼ 10 10 h −1 M ⊙ and a circular velocity of V 200 ∼ 35 km s −1 ). Photoheating may thus help regulate the formation of dwarf spheroidals and other galaxies at the extreme faint end of the luminosity function, but it cannot, on its own, reconcile the abundance of sub‐ L ★ galaxies with the vast number of dwarf haloes expected in the ΛCDM cosmogony. The lack of evolution or mass dependence seen in the baryon fraction augurs well for X‐ray cluster studies that assume a universal and non‐evolving baryon fraction to place constraints on cosmological parameters.