
Magnetic field inclination and atmospheric oscillations above solar active regions
Author(s) -
Schunker H.,
Cally P. S.
Publication year - 2006
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1111/j.1365-2966.2006.10855.x
Subject(s) - physics , helioseismology , magnetic field , magnetohydrodynamics , sunspot , astrophysics , computational physics , doppler effect , solar wind , optics , astronomy , quantum mechanics
Recent observational evidence for magnetic field direction effects on helioseismic signals in sunspot penumbrae is suggestive of magnetohydrodynamic (MHD) mode conversion occurring at lower levels. This possibility is explored using wave mechanical and ray theory in a model of the Sun's surface layers permeated by uniform inclined magnetic field. It is found that fast‐to‐slow conversion near the equipartition depth at which the sound and Alfvén speeds coincide can indeed greatly enhance the atmospheric acoustic signal at heights observed by Solar and Heliospheric Observatory/Michelson Doppler Imager and other helioseismic instruments, but that this effect depends crucially on the wave attack angle , i.e. the angle between the wavevector and the magnetic field at the conversion/transmission depth. A major consequence of this insight is that the magnetic field acts as a filter, preferentially allowing through acoustic signal from a narrow range of incident directions. This is potentially testable by observation.