
Stability of thermally balanced gas flow
Author(s) -
Wagner S. A.
Publication year - 2006
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1111/j.1365-2966.2006.10617.x
Subject(s) - physics , perturbation (astronomy) , bounded function , instability , barotropic fluid , mechanics , marginal stability , classical mechanics , vector field , mathematical analysis , mathematics , quantum mechanics
The linear analysis of hydrodynamic stability of the local thermal balance in a homogeneous moving gas is revisited to get information about the development of a spatially limited perturbation as seen at a fixed location. The consideration concerns both the evolution of the perturbed quantities inside a domain where the perturbation initially localizes and spreading the perturbation outside this domain. Inside the initial perturbation domain, the conditions for the exponential growth/decay are found to coincide with the well‐known Field's criteria, ensuing the analysis of the normal modes. However, as soon as the modal isentropic stability criterion is satisfied the perturbation outside its initial domain asymptotically spreads out with a subsonic velocity not depending on the initial perturbation field. It enables the gas flow to carry the disturbances away and leads to an improved stability criterion for inhomogeneous thermally balanced flows where the modally unstable region appears to be spatially bounded. The spreading velocity, playing a key role in the new stability criterion, is calculated as a function of the same derivatives of the heating/cooling function as the modal instability criteria exploit.