Open Access
Extinction techniques and impact on dust property determination
Author(s) -
Froebrich D.,
Del Burgo C.
Publication year - 2006
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1111/j.1365-2966.2006.10436.x
Subject(s) - extinction (optical mineralogy) , physics , astrophysics , stars , sky , galaxy , stellar population , star formation , population , astronomy , optics , demography , sociology
ABSTRACT The near‐infrared (NIR) extinction power‐law index (β) and its uncertainty is derived from three different techniques based on star counts, colour excess and a combination of them. We have applied these methods to Two Micron All Sky Survey (2MASS) data to determine maps of β and NIR extinction of the small cloud IC 1396 W. The combination of star counts and colour excess results in the most reliable method to determine β. It is found that the use of the correct β map to transform colour excess values into extinction is fundamental for column density profile analysis of clouds. We describe how artificial photometric data, based on the model of stellar population synthesis of the Galaxy, can be used to estimate uncertainties and derive systematic effects of the extinction methods presented here. We find that all colour excess based extinction determination methods are subject to small but systematic offsets, which do not affect the star counting technique. These offsets occur since stars seen through a cloud do not represent the same population as stars in an extinction‐free control field.