z-logo
open-access-imgOpen Access
The asymmetric structure of the Galactic halo
Author(s) -
Xu Y.,
Deng L. C.,
Hu J. Y.
Publication year - 2006
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1111/j.1365-2966.2006.10242.x
Subject(s) - physics , sky , astrophysics , halo , star count , galactic halo , stellar density , photometry (optics) , latitude , astronomy , asymmetry , stars , galaxy , quantum mechanics , k type main sequence star , t tauri star
Using the stellar photometry catalogue based on the latest data release (DR4) of the Sloan Digital Sky Survey (SDSS), a study of the Galactic structure using star counts is carried out for selected areas of the sky. The sample areas are selected along a circle at a Galactic latitude of +60°, and 10 strips of high Galactic latitude along different longitudes. Direct statistics of the data show that the surface densities of ℓ from 180° to 360° are systematically higher than those of ℓ from 0° to 180°, defining a region of overdensity (in the direction of Virgo) and another one of underdensity (in the direction of Ursa Major) with respect to an axisymmetric model. It is shown by comparing the results from star counts in the ( g − r ) colour that the density deviations are due to an asymmetry of the stellar density in the halo. Theoretical models for the surface density profile are built and star counts are performed using a triaxial halo of which the parameters are constrained by observational data. Two possible reasons for the asymmetric structure are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here