z-logo
open-access-imgOpen Access
The Shear Testing Programme – I. Weak lensing analysis of simulated ground‐based observations
Author(s) -
Heymans Catherine,
Van Waerbeke Ludovic,
Bacon David,
Berge Joel,
Bernstein Gary,
Bertin Emmanuel,
Bridle Sarah,
Brown Michael L.,
Clowe Douglas,
Dahle Håkon,
Erben Thomas,
Gray Meghan,
Hetterscheidt Marco,
Hoekstra Henk,
Hudelot Patrick,
Jarvis Mike,
Kuijken Konrad,
Margoniner Vera,
Massey Richard,
Mellier Yannick,
Nakajima Reiko,
Refregier Alexandre,
Rhodes Jason,
Schrabback Tim,
Wittman David
Publication year - 2006
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1111/j.1365-2966.2006.10198.x
Subject(s) - physics , weak gravitational lensing , shear (geology) , observational error , cosmology , astrophysics , residual , galaxy , algorithm , statistics , redshift , computer science , mathematics , petrology , geology
The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of all weak lensing measurements in preparation for the next generation of wide‐field surveys. In this first STEP paper, we present the results of a blind analysis of simulated ground‐based observations of relatively simple galaxy morphologies. The most successful methods are shown to achieve percent level accuracy. From the cosmic shear pipelines that have been used to constrain cosmology, we find weak lensing shear measured to an accuracy that is within the statistical errors of current weak lensing analyses, with shear measurements accurate to better than 7 per cent. The dominant source of measurement error is shown to arise from calibration uncertainties where the measured shear is over or underestimated by a constant multiplicative factor. This is of concern as calibration errors cannot be detected through standard diagnostic tests. The measured calibration errors appear to result from stellar contamination, false object detection, the shear measurement method itself, selection bias and/or the use of biased weights. Additive systematics (false detections of shear) resulting from residual point‐spread function anisotropy are, in most cases, reduced to below an equivalent shear of 0.001, an order of magnitude below cosmic shear distortions on the scales probed by current surveys. Our results provide a snapshot view of the accuracy of current ground‐based weak lensing methods and a benchmark upon which we can improve. To this end we provide descriptions of each method tested and include details of the eight different implementations of the commonly used Kaiser, Squires & Broadhurst method (KSB+) to aid the improvement of future KSB+ analyses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here