z-logo
open-access-imgOpen Access
The image separation distribution of strong lenses: halo versus subhalo populations
Author(s) -
Oguri Masamune
Publication year - 2006
Publication title -
monthly notices of the royal astronomical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.058
H-Index - 383
eISSN - 1365-2966
pISSN - 0035-8711
DOI - 10.1111/j.1365-2966.2006.10043.x
Subject(s) - physics , astrophysics , halo , galaxy , satellite galaxy , population , astronomy , gravitational lens , redshift , demography , sociology
We present a halo model prediction of the image separation distribution of strong lenses. Our model takes into account the subhalo population, which has been ignored in previous studies, as well as the conventional halo population. Haloes and subhaloes are linked to central and satellite galaxies by adopting a universal scaling relation between masses of (sub)haloes and luminosities of galaxies. Our model predicts that 10–20 per cent of lenses should be caused by the subhalo population. The fraction of lensing by satellite galaxies (subhaloes) peaks at ∼1 arcsec and decreases rapidly with increasing image separations. We compute fractions of lenses which lie in groups and clusters and find them to be ∼14 and ∼4 per cent, respectively; nearly half of such lenses are expected to be produced by satellite galaxies, rather than central parts of haloes. We also study mass distributions of lensing haloes and find that, even at image separations of ∼3 arcsec, the deviation of lens mass distributions from isothermal profiles is large; at or beyond ∼3 arcsec, image separations are enhanced significantly by surrounding haloes. Our model prediction agrees reasonably well with observed image separation distributions from galaxy to cluster scales.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here