z-logo
open-access-imgOpen Access
Geodetic observations of the ongoing Dabbahu rifting episode: new dyke intrusions in 2006 and 2007
Author(s) -
Hamling Ian J.,
Ayele Atalay,
Bennati Laura,
Calais Eric,
Ebinger Cynthia J.,
Keir Derek,
Lewi Elias,
Wright Tim J.,
Yirgu Gezahegn
Publication year - 2009
Publication title -
geophysical journal international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0956-540X
DOI - 10.1111/j.1365-246x.2009.04163.x
Subject(s) - geology , rift , seismology , volcano , interferometric synthetic aperture radar , crust , subsidence , east african rift , induced seismicity , magma , tectonics , geophysics , geomorphology , synthetic aperture radar , remote sensing , structural basin
SUMMARY A 60‐km‐long dyke intruded the Dabbahu segment of the Nubia–Arabia Plate boundary (Afar, Ethiopia) in 2005 September, marking the beginning of an ongoing rifting episode. We have monitored the continuing activity using Satellite Radar Interferometry (InSAR) and with data from Global Positioning System (GPS) instruments and seismometers deployed around the rift in response to the initial intrusion. These data show that a sequence of new dyke intrusions has reintruded the central and southern section of the Dabbahu segment. The first was in 2006 June and seven new dykes were emplaced by the end of 2007. Modelling of InSAR data indicates that the dykes were between 0.5 and 2 m wide, up to ∼10 km long and confined to the upper 10 km of crust. An intrusion in 2007 August was associated with a 5‐km‐long basaltic fissural eruption. During the new dyke injections, InSAR and GPS data show no subsidence at either of the volcanoes at the northern end of the segment, which partly fed the 2005 September dyke. Seismicity data imply that the dykes were probably fed from a source near the Ado'Ale Silicic Complex at the centre of the segment, but the lack of significant subsidence there implies that the source is very deep, or that there was minimal deflation at shallow magma sources. The new dykes are concentrated in an area where the 2005 dyke did not produce significant opening, implying that residual tensile tectonic stresses are higher in this location and are focusing the later intrusions. The sequence of dyke intrusions observed so far is similar to those seen in Iceland during the Krafla rifting episode, which lasted 9 yr from 1975 to 1984. It is likely that, with a continued magma supply, dykes will continue to be intruded until the tectonic stress is fully relieved. As observed at Krafla, eruptions are likely to become more common before the rifting episode is concluded.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here