
Source inversion of W phase: speeding up seismic tsunami warning
Author(s) -
Kanamori Hiroo,
Rivera Luis
Publication year - 2008
Publication title -
geophysical journal international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0956-540X
DOI - 10.1111/j.1365-246x.2008.03887.x
Subject(s) - seismology , geology , rayleigh wave , seismogram , superposition principle , amplitude , inversion (geology) , phase (matter) , seismic energy , geodesy , surface wave , physics , tectonics , optics , quantum mechanics
SUMMARY W phase is a long period phase arriving before S wave. It can be interpreted as superposition of the fundamental, first, second and third overtones of spheroidal modes or Rayleigh waves and has a group velocity from 4.5 to 9 km s −1 over a period range of 100–1000 s. The amplitude of long period waves better represents the tsunami potential of an earthquake. Because of the fast group velocity of W phase, most of W phase energy is contained within a short time window after the arrival of the P wave. At a distance of 50°, W phase energy is contained within 23 min after the origin time which is the distinct advantage of using W phase for rapid tsunami warning purposes. We use a time domain deconvolution method to extract W phases from the broad‐band records of global seismic networks. The bandwidth of W phase is approximately from 0.001 to 0.01 Hz, and we bandpass filter the data from 0.001 to 0.005 Hz in most cases. Having extracted W phase from the vertical component records, we perform a linear inversion using a point source to determine M w and the source mechanism for several large earthquakes including the 2004 Sumatra–Andaman earthquake, the 2005 Nias earthquake, the 2006 Kuril Is. earthquake and the 2007 Sumatra earthquake. W phase inversion yields reliable solutions and holds promise of the use of W phase for rapid assessment of tsunami potential.