z-logo
open-access-imgOpen Access
Validating tomographic model with broad‐band waveform modelling: an example from the LA RISTRA transect in the southwestern United States
Author(s) -
Alex Song TehRu,
Helmberger Don. V.
Publication year - 2007
Publication title -
geophysical journal international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.302
H-Index - 168
eISSN - 1365-246X
pISSN - 0956-540X
DOI - 10.1111/j.1365-246x.2007.03508.x
Subject(s) - geology , amplitude , slab , waveform , seismology , transect , mantle (geology) , geodesy , geophysics , optics , physics , oceanography , quantum mechanics , voltage
SUMMARY Traveltime tomographic models of the LA RISTRA transect produce excellent waveform fits if we amplify the damped images. We observe systematic waveform distortions across the western edge of the Great Plains from South American events, starting about 300 km east of the centre of the Rio Grande Rift. The amplitude decreases by more than 50 per cent within array stations spanning less than 200 km while the pulse width increases by more than a factor of 2. This feature is not observed for the data arriving from the northwest. While the S ‐wave tomographic image shows a fast slab‐like feature dipping to the southeast beneath the western edge of the Great Plains, synthetics generated from this model do not reproduce the waveform characteristics. However, once we modify the tomographic image by amplifying the velocity contrast between the slab and adjoining mantle by a factor of 2–3, the synthetics produce observed amplitude decay and pulse broadening. In addition to the traveltime delay, amplitude variation due to wave phenomena such as slab diffraction, focusing and defocusing provide much tighter constraints on the geometry of the fast anomaly and its amplitude and sharpness as demonstrated by a forward sensitivity test and snapshots of the seismic wavefield. Our preferred model locates the slab 200 km east of the Rio Grande Rift dipping 70°–75° to the southeast, extending to a depth near 600 km with a thickness of 120 km and a velocity of about 4 per cent fast. In short, adding waveform and amplitude components to regional tomographic studies can help validate and establish structural geometry, sharpness and velocity contrast.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here